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It has been a clinically important, long-standing challenge to accurately localize
epileptogenic focus in drug-resistant focal epilepsy because more intensive intervention
to the detected focus, including resection neurosurgery, can provide significant seizure
reduction. In addition to neurophysiological examinations, neuroimaging plays a crucial
role in the detection of focus by providing morphological and neuroanatomical
information. On the other hand, epileptogenic lesions in the brain may sometimes
show only subtle or even invisible abnormalities on conventional MRI sequences,
and thus, efforts have been made for better visualization and improved detection
of the focus lesions. Recent advance in neuroimaging has been attracting attention
because of the potentials to better visualize the epileptogenic lesions as well as provide
novel information about the pathophysiology of epilepsy. While the progress of newer
neuroimaging techniques, including the non-Gaussian diffusion model and arterial spin
labeling, could non-invasively detect decreased neurite parameters or hypoperfusion
within the focus lesions, advances in analytic technology may also provide usefulness
for both focus detection and understanding of epilepsy. There has been an increasing
number of clinical and experimental applications of machine learning and network
analysis in the field of epilepsy. This review article will shed light on recent advances in
neuroimaging for focal epilepsy, including both technical progress of images and newer
analytical methodologies and discuss about the potential usefulness in clinical practice.

Keywords: focal epilepsy, magnetic resonance imaging, advanced neuroimaging, structural neuroimaging,
diffusion neuroimaging, functional neuroimaging

INTRODUCTION

Epilepsy is a common chronic brain disease, which affects around 50 million people all over
the world (Leonardi and Ustun, 2002; GBD 2016 Epilepsy Collaborators, 2019). The burden
of epilepsy includes recurrent seizures, their physical and psychosocial problems, and various
comorbidities (GBD 2016 Epilepsy Collaborators, 2019). While seizures can be controlled by anti-
seizure medicine in over 60% of patients with epilepsy (Kwan and Brodie, 2000; Chen et al., 2018b),
the rest of them experience drug-resistant seizures, which may result in poorer quality of life
(Kubota and Awaya, 2010). Epilepsy surgery is a well-established option to remediate patients with
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drug-resistant epilepsy, and particularly accurate localization of
epileptogenic focus has a key role for the successful surgical
resection in focal epilepsy (Rathore and Radhakrishnan, 2015).

Neuroimaging is an essential examination for epilepsy,
and one of its major roles is to visualize epileptogenic
lesions, particularly in patients with drug-resistant focal seizures
(Bernasconi et al., 2019). However, a part of cases with focal
epilepsy show visually normal MRI, which is called “MRI-
negative” epilepsy (So and Lee, 2014), and the proportion of MRI-
negative cases was supposed to be up to 30% in temporal lobe
epilepsy (Muhlhofer et al., 2017). Since unsuccessful localization
of focus by MRI may lead to poorer surgical seizure outcome
(So and Lee, 2014), accurate visualization of epileptogenic
lesions by neuroimaging techniques has been a long-standing
challenge in epilepsy.

Thus, the current review will shed light on recent advanced
neuroimaging techniques for focus detection as well as
conventional standard and quantitative analysis.

CONVENTIONALLY “VISIBLE”
STRUCTURAL LESIONS

Even though a lot of quantitative methodologies have been
developed, visual inspection is still an important and standard
approach for focus detection. Figure 1 presents an overview
of conventionally visible epileptogenic lesions, including
hippocampal sclerosis, focal cortical dysplasia and other
malformation of cortical development, neoplasms, vascular
malformations, and cerebrovascular diseases. Before discussing
about MRI-negative epilepsy, epileptologists should be aware
of these common epileptogenic lesions. Particularly, the two
common etiologies, i.e., hippocampal sclerosis and focal
cortical dysplasia, may need careful and specific attention for
detection, as only subtle abnormalities may sometimes be found
(Bernasconi et al., 2019). Additionally, meningoencephalocele
has been recently recognized as another etiology in drug-
resistant focal epilepsy, which may sometimes show only
subtle abnormalities (Saavalainen et al,, 2015; Tse et al.,
2020). In cases with encephalocele, constructive interference
in steady-state (CISS) imaging may be helpful for detection
by enhancing the contrast between brain parenchyma and
cerebrospinal fluid (Wang et al., 2017) (Figure 2). On the
other hand, we need to keep in mind that the detected
abnormalities may not always cause the seizures, in cases with
incidental lesions.

It is also important to differentiate epileptogenic lesions,
particularly focal cortical dysplasia, from other findings, such
as unspecific aging-related changes showing T2 hyperintensity.
For that, we need to consider the main features of focal cortical
dysplasia, including cortical thickening, blurring of gray-white
matter junction, cortical or white matter T2 hyperintensity, and
transmantle sign (De Vito et al., 2021) (Figures 1B, 3). To detect
hippocampal sclerosis, which is the most common etiology of
temporal lobe epilepsy (Thom, 2014), attention should be paid
to hippocampal atrophy and T2 hyperintensity, and thinning
and blurring of the molecular layer (Bernasconietal.,2019;

De Vito et al., 2021) (Figure 4). As described, epileptogenic
lesions are sometimes subtle, and 3D acquisition with reformats is
important (De Vito et al., 2021). Therefore, we should be careful
about motion artifact and quality control.

RECOMMENDATION OF THE OFFICIAL
STANDARD PROTOCOL FOR EPILEPSY

In 2019, the International League Against Epilepsy (ILAE)
published the official recommendation of structural MRI for
epilepsy (Bernasconi et al., 2019). In that, the following protocols
were recommended as a standard: 3D millimetric T1-weighted
images (T1WI) and fluid-attenuated inversion recovery (FLAIR)
images, and 2D submillimetric coronal T2-weighted images
(T2WI). Figure 3 shows a representative case with drug-resistant
focal epilepsy, who benefited from 3D millimetric FLAIR images.
It was impossible to detect any abnormalities in both coronal and
axial 2D FLAIR images with 3-mm slice thickness (Figure 3A),
but the 3D FLAIR images revealed findings of a bottom-
of-sulcus-type focal cortical dysplasia with transmantle sign
(Figure 3B), and changing the signal range may sometimes be
helpful to clearly visualize the lesion (Figure 3C). The patient
underwent surgical resection, and the pathological result was
focal cortical dysplasia type IIb. Thus, the optimal MRI protocol
for epilepsy may be able to make the previously invisible
lesions visible.

However, even with such optimized protocols, we sometimes
encounter patients with visually normal MRI. To detect the
conventionally invisible epileptogenic lesions, efforts have been
made to seek for useful advanced neuroimaging techniques in
drug-resistant focal epilepsy (Bernasconi and Wang, 2021).

ADVANCED STRUCTURAL IMAGING

Beyond the recommended MRI protocol, newer structural
MRI sequences have been suggested to provide additional
usefulness. Double inversion recovery (DIR), which shows a high
contrast between gray and white matters (Ryan, 2016), has been
increasingly reported as a useful sequence to detect epileptogenic
lesions in temporal lobe epilepsy (TLE) and extratemporal focal
epilepsy (Li et al., 2011; Morimoto et al., 2013a,b; Granata et al,,
2016; Wong-Kisiel et al., 2016; Wychowski et al., 2016; Sone et al.,
2021). In TLE, the superiority of DIR to FLAIR for the detection
of anterior temporal white matter abnormalities in the focus
side in TLE was reported by both qualitative and quantitative
evaluations (Morimoto et al., 2013a; Sone et al., 2021). Figure 5
describes a case of conventionally MRI-negative PET-positive
unilateral TLE, in which increased DIR signals can be found in
the focus side, while it was difficult to detect on FLAIR, TIWI,
and T2WI. More recently, fluid and white matter suppression
(FLAWS) has been reported for better visualization of focal
cortical dysplasia even in conventionally MRI-negative cases
(Chenetal., 2018a; Sun et al., 2021). FLAWS suppresses the white
matter and cerebrospinal fluid signals and then generate gray
matter-specific images (Tanner et al., 2012; Chen et al., 2018a).
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FIGURE 1 | An overview of visible epileptogenic lesions (red arrows). (A) Hippocampal sclerosis, (B) focal cortical dysplasia, (C) other malformations of cortical
development, (D) neoplasms, (E) vascular malformations, and (F) cerebrovascular lesions.
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Thus, the enhanced contrast between gray and white matters by
these newer sequences may improve the visualization of epileptic
foci. In addition, edge-enhancing gradient echo (EDGE) imaging
was reported to allow us to detect focal cortical dysplasia by
directly visualizing the boundary between gray and white matters
(Middlebrooks et al., 2020).

ADVANCED DIFFUSION IMAGING

The progress in diffusion MRI has been an emerging topic
in the field of neurology and psychiatry. Particularly, multi-
shell protocols of diffusion MRI, including diftusion kurtosis
imaging (DKI), q-space imaging (QSI), restriction spectrum
imaging (RSI), and neurite orientation dispersion and density
imaging (NODDI), have provided further information on brain
microstructures (Cohen and Assaf, 2002; Jensen et al., 2005;
White et al., 2013; Sone, 2019). In the field of epilepsy, NODDI
and RSI have been repeatedly reported for their usefulness
(Winston et al., 2014; Loi et al, 2016; Reyes et al., 2018;
Rostampour et al., 2018; Sone et al., 2018; Lorio et al., 2020;
Winston et al., 2020; Shao et al., 2021). Neurite orientation
dispersion and density imaging allows us to investigate neurite
density and orientation dispersion of the brain microstructures,
and reduced neurite density has been consistently found in
visible focal cortical dysplasia (Winston et al., 2014; Lorio et al.,
2020). Neurite orientation dispersion and density imaging may

FIGURE 2 | A case with drug-resistant temporal lobe epilepsy and
encephalocele. Constructive interference in steady-state (CISS) imaging was
helpful for detection by enhancing the contrast between brain parenchyma
and cerebrospinal fluid.

also visualize neurite abnormalities within the focus even in
MRI-negative cases (Sone et al., 2018). Figure 6 represents two
cases with conventionally MRI-negative PET-positive unilateral
TLE, which showed reduced neurite density within the anterior
temporal lobe of the focus side. In TLE with hippocampal
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FIGURE 3 | A case with drug-resistant focal epilepsy, who benefited from the official standard protocol for epilepsy. It was impossible to detect any abnormalities in
both coronal and axial 2D fluid-attenuated inversion recovery (FLAIR) images with 3-mm slice thickness (A), but the 3D FLAIR images revealed findings of a
bottom-of-sulcus-type focal cortical dysplasia with transmantle sign (B), and changing the signal range is sometimes helpful to clearly visualize the lesion (C). The
pathological finding was focal cortical dysplasia type llb.

FIGURE 4 | MRl findings in a case with unilateral hippocampal sclerosis (left). The affected hippocampus showed hippocampal atrophy and T2 hyperintensity, and
thinning and blurring of the molecular layer, compared with the contralateral side or normal case (right).

sclerosis, reductions of neurite orientation dispersion as well as  tuberous sclerosis (Shao et al., 2021). RSI is another advanced
neurite density were reported (Sone et al., 2018). Additionally, diffusion MRI using multi-shell, reduced neurite density, and its
NODDI could help in better visualization of cortical tubers in  correlation with clinical symptoms in epilepsy was also confirmed
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the hippocampus.

FIGURE 5 | A case of conventionally MRI-negative PET-positive temporal lobe epilepsy (TLE). While it was difficult to detect abnormalities on FLAIR, double inversion
recovery (DIR) visualized hyperintensity within the anterior temporal white matter of the focus side. T1-weighted images (T1WI) and T2WI were also intact including

(2019).

FIGURE 6 | Two cases of conventionally MRI-negative PET-positive TLE. While no abnormalities were found in FLAIR and T2WI including the hippocampus, neurite
orientation dispersion and density imaging (NODDI) revealed reduced neurite density of the focus side. (A) Modified from Sone et al. (2018). (B) Modified from Sone

FDG-PET

by RSI (Loi et al., 2016; Reyes et al., 2018). Thus, advances in
diffusion MRI may be a promising tool for patients with drug-
resistant focal epilepsy and invisible lesions on conventional MRI.

ADVANCED FUNCTIONAL
NEUROIMAGING

Interictal reduction of glucose metabolisms in *F-FDG PET
and ictal hyperperfusion detected by SPECT are traditional
and established biomarkers for the detection of focus in drug-
resistant epilepsy and often effective for MRI-negative cases
(Kumar and Chugani, 2013; Shigemoto et al., 2020). In addition

to nuclear imaging, recent advances in functional neuroimaging
may further improve the detection of focus. Arterial spin labeling
(ASL) is a non-invasive method to visualize brain perfusion
by MRI (Haller et al., 2016) and, thus, expected to detect
abnormal cerebral blood flow, particularly interictal reduction,
around the epileptogenic foci in epilepsy (Figure 7) (Boscolo
Galazzo et al., 2016; Shang et al, 2018; Wang et al., 2018;
Sone et al,, 2019; Lam et al., 2020). Although ASL might not
surpass '8F-FDG PET in terms of detectability of focus (Sone
et al.,, 2019), its non-invasive nature and wide availability will
guarantee a supplemental role in clinical practice. Functional
MRI triggered by electroencephalogram (EEG-fMRI) is another
newer tool of functional imaging for focus detection. EEG-fMRI

Frontiers in Neuroscience | www.frontiersin.org

July 2021 | Volume 15 | Article 699176


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Sone

Advanced Neuroimaging in Focal Epilepsy

FIGURE 7 | A case of temporal lobe epilepsy with hippocampal sclerosis.
Both Arterial spin labeling (ASL) and 18F-FDG PET showed reduced signals
around the temporal lobe of focus side (modified from Sone et al., 2019).

can non-invasively detect the hemodynamic signals related with
interictal epileptic discharges on EEG (van Graan et al.,, 2015),
and then it can be utilized to visualize the epileptogenic zone and
its propagations (Khoo et al., 2017, 2018).

QUANTITATIVE ANALYSIS AND
POST-PROCESSING

Another solution for MRI-negative drug-resistant epilepsy is
quantitative analysis and post-processing of images. It is known
that quantitative hippocampal volumetry and signal analysis
improve the visual detectability of hippocampal sclerosis (Coan
et al., 2014), and better segmentation and detailed hippocampal
profiling methods have also been developed (Winston et al.,
2013; Vos et al, 2020). The Morphometric Analysis Program
(MAP) is a well-investigated software to generate voxel-based
morphometric maps, which can visualize subtle blurring of the
gray-white boundary or abnormal cortical surface, using 3D
TIWL In fact, many studies confirmed the usefulness of MAP
for the detection of focal cortical dysplasia (Kassubek et al., 2002;
Huppertz et al., 2005; Wagner et al., 2011; Wang et al., 2015; Lin
etal., 2018; Demerath et al., 2020) or band heterotopia (Huppertz
et al., 2008). In addition to T1WI, usefulness of quantitative
FLAIR or DIR analysis was also reported (Rugg-Gunn et al., 20065
Focke et al., 2009).

Machine learning is an emerging topic in this field; the
advantage of machine-learning may include the accurate,
automated, and fast pattern learning, which could be utilized to
develop and/optimize clinical algorithms. Currently, studies on
machine learning and epilepsy imaging reported its usefulness
in the lateralization of TLE (Pustina et al., 2015; Bennett et al.,
2019; Beheshti et al., 2020a,b) or automated detection of focal
cortical dysplasia (Hong et al., 2014; Hong et al., 2016; Adler
etal,, 2017; Tan et al., 2018). While machine leaning has provided

promising results for the detection of focus in epilepsy, we may
need to develop and validate consistent methodology given the
diversity of methods (Sone and Beheshti, 2021). Furthermore,
network analysis is another trend in epilepsy (Bernhardt et al.,
2015), and literature suggested that network metrics derived
from neuroimaging could also be used for focus detection when
combined with machine learning (Chiang et al., 2015; Yang et al.,
2015; Kamiya et al., 2016; Fallahi et al., 2020).

MULTIMODAL IMAGING

Combination of multimodal imaging is also important for precise
localization of focus (Kurian et al., 2007). Concordance across
different modalities supports successful epilepsy surgery (Rathore
and Radhakrishnan, 2015), and in addition, coregistered images
would improve visual detectability of epileptogenic foci, which
was demonstrated by a study using MRI and ®F-FDG PET
(Salamon et al., 2008). Multimodal imaging is also a topic in
machine learning studies (Pustina et al., 2015; Bennett et al.,
2019). Given the importance of multiple modalities in epilepsy,
developing a platform for fusion of data (Marecek et al., 2021)
would become a significant work for the future.

SEVEN-TESLA MRI

Seven-tesla (7T) MRI is expected to yield improved detectability
over 3T MRI, by the ultra-high-field magnetic strength (van
Lanen et al,, 2021). Despite the still limited access to 7T MRI,
there have been several studies reporting its usefulness in epilepsy
(De Ciantis et al., 2016; Veersema et al., 2017; Bartolini et al.,
2019; Feldman et al., 2019). On the other hand, diagnostic gain
of 7T over conventional MRI has been variable, ranging from 8
to 67% (van Lanen et al., 2021), and thus, further studies would
be needed to establish the utility of 7T MRI for clinical use in
patients with epilepsy.

ESTABLISHMENT OF CLINICAL MRI
STANDARDS FOR EPILEPSY

While this review focused on the recent progress in newer
imaging techniques, uniformity of the MRI protocols is of
great relevance in clinical epileptology. To establish a practical
standard, various aspects need to be considered, including
magnetic field strength, imaging resolution, and acquisition time.

Regarding the magnetic field strength, 1.5- or 3-T MRI
scanners are currently utilized in clinical practice. In principle,
3-T MRI provides a better signal-to-noise ratio and higher
resolution of images, although we need to pay more careful
attention to flow and motion artifact in 3-T scanners (Martinez-
Rios et al., 2016; De Vito et al.,, 2021). Indeed, some previous
studies reported better identification of epileptogenic lesions by
3- than by 1.5-T MRI, and the use of 3-T MRI may improve
the clinical decision making (Knake et al., 2005; Zijlmans et al.,
2009; Mellerio et al., 2014; Rubinger et al., 2016). The imaging
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resolution should be along with the official recommendation
of ILAE (Bernasconi et al., 2019), i.e., 3D isotropic TIWI and
FLAIR images with millimetric voxels (1 x 1 x 1 mm?), and
2D submillimetric T2WT designed for hippocampal evaluation.
More advanced techniques, which were reviewed in this article,
may be considered as additional imaging. On the other hand,
however, such additions usually require longer acquisition time,
which may become a trade-off dilemma for clinically acceptable
epilepsy imaging. Thus, those advanced imaging methods need
to become more established, particularly by robustly revealing
the clinical usefulness, e.g., long-term prognosis of surgery. The
manufacturer of MRI scanners is another important factor for the
uniformity of epilepsy protocols, as some newer sequences have
been developed by each specific manufacturer.

LIMITATION AND FUTURE CHALLENGE

As noted above, compared with conventionally established
sequences, the usefulness of advanced imaging still needs to
be more robustly elucidated. Although most studies reported
potentials of better focus detection, long-term seizure outcomes
after resection of the abnormal areas are rarely investigated,
so far. Additionally, the cost effectiveness of acquisition time
should be kept in mind. Thus, future studies should include
more comprehensive and robust comparisons between imaging
modalities and clinical parameters, as well as consideration of
time efficiency. Another important topic in epilepsy imaging is
the preclinical MRI studies to identify the underlying mechanism
and time course of epileptogenesis (Immonen et al., 2019; Reddy
et al, 2019). Advanced neuroimaging methods may provide
further information for basic research on epilepsy. Eventually,
in addition to focus detection, neuroimaging could contribute to
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